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Аннотация. Исследование посвящено анализу и сравнению различных подходов, применяемых при прогно-

зировании энергопотребления. Дана характеристика оптового рынка электроэнергии и мощности, процесса 

торговли. Приведены преимущества оптовой торговли для покупателей и продавцов. Обоснована актуаль-

ность прогнозирования энергопотребления при таком виде торговли. Поставлена задача исследования в виде 

повышения точности прогнозирования в контексте энергопотребления на основе разработки и сравнительного 

анализа моделей, основанных на подходах от классических статистических моделей до современных алгорит-

мов машинного и глубокого обучения. Глобально рассмотрены три подхода: статистические модели 

(SARIMA), методы машинного (RF, XGBoost, SVM, k-NN, DT, AD) и глубокого (LSTM, GRU, CNN, ResNet, 

Transformer) обучения. Рассмотрен стекинг моделей, позволяющий объединять результаты различных алго-

ритмов для повышения точности прогноза. Исследовано влияние комбинирования различных моделей на ито-

говый результат. В качестве набора данных использовались открытые данные почасового энергопотребления. 

Численные результаты оценивались с использованием метрик MSE, RMSE, MAE и MAPE. По итогам тести-

рования определены достоинства и недостатки методов каждого из подходов, проведен сравнительный анализ 

алгоритмов, даны рекомендации к улучшению разработанных методов. Показано, что комбинированная мо-

дель LSTM-GRU достигает наилучшего значения точности прогнозирования с минимальной ошибкой MAPE 

1,86 %. При этом удалось повысить точность модели Transformer с 2,8 до 2,25 %, что в перспективе может 

означать возможность дальнейшего совершенствования моделей данной архитектуры. Полученные результа-

ты подтверждают целесообразность применения гибридных нейросетевых архитектур при краткосрочном 

прогнозировании энергопотребления в электроэнергетических системах. 

Ключевые слова: машинное обучение, прогнозирование электропотребления, глубокое обучение, временные 

ряды, статистические модели, LSTM 
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Abstract. This paper examines the relevance of energy consumption forecasting and provides an analysis and compar-

ison of different approaches used in this field. It describes the structure of the wholesale electricity and capacity mar-

ket and the trading process, highlighting the advantages of wholesale trading for both buyers and sellers and explain-
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ing why accurate energy consumption forecasting is important under these market conditions. The research aim is de-

fined as improving forecasting accuracy by developing and comparing models based on approaches ranging from 

classical statistical methods to modern machine learning and deep learning algorithms. Three main groups of methods 

are considered: statistical models (SARIMA); machine learning techniques (RF, XGBoost, SVM, k-NN, DT, AD); 

and deep learning models (LSTM, GRU, CNN, ResNet, Transformer). The paper also discusses model stacking, 

which allows combining outputs of different algorithms to increase forecast accuracy, and analyzes how combining 

multiple models affects the final results. Open hourly energy consumption data were used as the dataset, and numeri-

cal results were evaluated with MSE, RMSE, MAE, and MAPE metrics. The testing results highlight the strengths and 

weaknesses of methods from each group, provide a comparative analysis of the algorithms, and offer recommenda-

tions for improving the developed models. It is shown that the combined LSTM-GRU model achieves the best fore-

casting accuracy with a minimum MAPE of 1.86%. In addition, the performance of the Transformer model was im-

proved from 2.8% to 2.25%, indicating the potential for further development of models within this architecture. The 

results confirm the effectiveness of hybrid neural network architectures for short-term energy consumption forecasting 

in power systems. 

Keywords: machine learning, electricity consumption forecasting, deep learning, time series, statistical models, 

LSTM 
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Введение 

Современное развитие электроэнергетики Рос-

сийской Федерации характеризуется ростом объемов 

потребления и усложнением структуры энергорын-

ков. На оптовом рынке электроэнергии и мощности 

(ОРЭМ), функционирующем с 2006 г., взаимодей-

ствуют генерирующие, сетевые и сбытовые компа-

нии, деятельность которых регламентируется Феде-

ральным законом № 35-ФЗ «Об электроэнергетике».  

Оптовый рынок электроэнергии и мощности 

представляет собой финансовый инструмент купли 

и продажи электроэнергии в России. Для покупате-

лей участие в этом рынке дает возможность пере-

стать платить сбытовую надбавку гарантирующему 

поставщику, за счет этого снижаются затраты на 

электроэнергию. Экономия происходит на каждом 

кВт·ч потребленной электроэнергии вне зависимо-

сти от объемов. Выгода ОРЭМ для продавца состо-

ит в том, что на оптовом рынке электроэнергии 

спрос со стороны покупателей неэластичен. Изме-

нение цены слабо влияет на объем потребления, 

предприятия не могут мгновенно сократить потреб-

ление из-за необходимости в непрекращающемся 

потоке энергии для поддержания работы. 

Стоимость кВт·ч перебора/недобора от подан-

ной величины рассчитывается по тарифу баланси-

рующего рынка. В последнее время идет рост чис-

ла энергоемких потребителей, таких как центры 

обработки данных, предприятия с круглосуточны-

ми циклами работы и крупные городские агломе-

рации. При этом в Российской Федерации, с одной 

стороны, цены на балансирующем рынке, как пра-

вило, отличаются от цен в рынке «на сутки вперед» 

на 10–30 % в сторону увеличения, из-за чего воз-

растает важность краткосрочного/среднесроч- 

ного прогнозирования необходимой электроэнер-

гии на «рынке на сутки вперед» и формирования 

плана для энергосбытового предприятия [1]. С дру-

гой стороны, объем рынка данных в мире растет  

в среднем на 20 % в год, рынок центров обработки 

данных в зависимости от региона – на 10–20 %, 

иногда на 30 % в год. За 2018–2022 гг. рынок цен-

тров обработки данных в России вырос более чем  

в 2,5 раза, до 87,4 млрд руб. [2]. Недостаточная 

мощность, перебои с поставками электроэнер- 

гии [3], отсутствие питания в жилых кварталах  

и предприятиях могут существенно ухудшить инве-

стиционный климат региона, отпугнув потенциаль-

ных крупных потребителей и налогоплательщи- 

ков [4]. Поэтому актуальной становится задача  

не только прогнозирования потребления электро-

энергии, но и повышения точности прогноза, кото-

рая непосредственно оказывает влияние на ста-

бильность работы энергосистемы. Задача исследо-

вания заключается в повышении точности прогно-

зирования в контексте энергопотребления на осно-

ве сравнительного анализа моделей, основанных на 

подходах от классических статистических моделей 

до современных алгоритмов машинного и глубоко-

го обучения.  

 

Классификация подходов к прогнозирова-

нию энергопотребления и метрики оценки точ-

ности прогнозирования моделей 

Данные об энергопотреблении являются вре-

менными рядами и могут быть спрогнозированы на 

основе тех же подходов. Необходимо учитывать, 

что энергопотребление характеризуется сложными 

и нелинейными зависимостями, выраженной сезон-

ностью, нестационарностью и внешними факторами 

(метеоусловия, экономика, пандемии). Для решения 

задачи прогнозирования временных рядов выделя-

ют 3 глобальных подхода: статистические модели, 

машинное обучение, глубокое обучение (рис. 1).  



Вестник Астраханского государственного технического университета.  

Серия: Управление, вычислительная техника и информатика. 2026. № 1 

ISSN 2072-9502 (Print), ISSN 2224-9761 (Online) 

Управление, моделирование, автоматизация 
 

 

 

42 

А
б

р
ам

о
в
и

ч
 В

. 
В

.,
 Х

ан
о
в
а 

А
. 

А
. 
К

л
ас

си
ф

и
к
ац

и
я 

и
 с

р
ав

н
и

те
л
ьн

ы
й

 а
н

ал
и

з 
то

ч
н

о
ст

и
 м

ет
о

д
о
в
 п

р
о
гн

о
зи

р
о

в
ан

и
я
 э

н
ер

го
п

о
тр

еб
л
ен

и
я 

 
 

Рис. 1. Классификация методов прогнозирования энергопотребления 

 

Fig. 1. Classification of energy consumption forecasting methods 

 

Традиционные статистические методы про-

гнозирования (ARIMA, SARIMA, экспоненциаль-

ное сглаживание, см. рис. 1, I) плохо справляются  

с нелинейными зависимостями, сезонностью и вли-

янием внешних факторов (погодных, экономиче-

ских и социальных) [5].  

Среди статистических моделей SARIMA (см. 

рис. 1, 1) показывает лучшие результаты в контексте 

прогнозирования энергопотребления из-за учета 

следующих факторов: учет сезонности, комбинация 

стационарности и адаптивности [6]. SARIMA явно 

моделирует сезонные паттерны (например, суточ-

ные пики нагрузки или годовые циклы) через пара-

метры P, D, Q, s, где P – порядок сезонной авторе-

грессии, D – степень сезонного дифференцирования, 

Q – порядок сезонного скользящего среднего, s – пе-

риод сезонности (например, 12 для месячных дан-

ных). Это отличает ее от ARIMA, которая игнорирует 

сезонность. В исследовании [7] прогнозирования вы- 

работки ветряных электростанций SARIMA превзо-

шла ARIMA и другие методы именно за счет оптими- 

зации сезонных параметров. 

К методам машинного обучения (см. рис. 1, II), 

которые чаще всего применяются для решения за-

дачи прогнозирования временных рядов, относятся 

метод случайного леса Random Forest (RF), метод 

градиентного бустинга (XGBoost), дерево решений 

Decision Tree (DT), обнаружение аномалий Anomaly 

Detection (AD), метод k-ближайших соседей  

k-Nearest Neighbors (k-NN), метод опорных векторов 

Support Vector Machines (SVM), комбинированные 

модели (стекинг) [8]. В [9] было выявлено, что сре-

ди перечисленных моделей наилучшие результаты 

при краткосрочном прогнозировании показали мо-

дели RF (см. рис. 1, 2) и XGBoost (см. рис. 1, 3), по-

этому в данной работе было решено отдельно раз-

работать и протестировать эти модели, а остальные 

объединить в стекинг (см. рис. 1, 4) с добавлением 

XGBoost. 
Методы глубокого обучения (см. рис. 1, III) 

разделяются на следующие категории: реккурент-
ные нейронные сети (Recurrent neural network, 
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RNN), сверточные нейронные сети (Convolutional 
neural network, CNN) и трансформеры (Transformer).  

Рекуррентные нейронные сети включают в се-
бя сети с длительной краткосрочной памятью 
(Long Short-Term Memory, LSTM), рекуррентный 
блок с управлением (Gated Recurrent Unit, GRU) – 
две разновидности рекуррентной нейронной сети 
(RNN), разработанные специально для борьбы  
с проблемами затухания и взрыва градиента.  

Сеть LSTM предназначена для обучения и за-
поминания паттернов на длинных последователь-
ностях данных. В отличие от стандартных RNN, 
которые не справляются с долгосрочными зависи-
мостями из-за проблемы исчезающего градиента, 
LSTM используют уникальный механизм блоки-
ровки для регулирования потока информации. 
Ключом к возможностям LSTM является ее внут-
ренняя структура, которая включает в себя «состо-
яние ячейки» и несколько «ворот». Состояние 
ячейки действует как конвейерная лента, перено-
сящая соответствующую информацию через по-
следовательность. Ворота – вход, «забывание»  
и выход – представляют собой нейронные сети, 
которые управляют тем, какая информация добав-
ляется, удаляется или считывается из состояния 
ячейки. Ворота «забывания» решают, какая ин-
формация из предыдущего состояния ячейки 
должна быть отброшена. Входные ворота опреде-
ляют, какая новая информация из текущего входа 
должна быть сохранена в состоянии ячейки. Вы-
ходные ворота управляют тем, какая информация 
из состояния ячейки используется для генерации 
выходного сигнала для текущего временного шага. 
Такая структура ячеек LSTM позволяет модели 
запоминать важную информацию на протяжении 
многих шагов во времени, что помогает лучше по-
нимать последовательные данные, например текст 
или временные ряды. 

Сеть GRU, в сущности, представляет собой 
упрощенную LSTM. GRU объединяет ворота «за-
бывания» и входные ворота в одни ворота «обнов-
ления» и объединяет состояние ячейки и скрытое 
состояние. Это делает сети GRU эффективнее  
с вычислительной точки зрения и быстрее в обуче-
нии, хотя в некоторых задачах они могут уступать 
LSTM. В [10] рассматривается гибридная модель 
LSTM-GRU, которая использует преимущества 
обеих архитектур, объединяя их возможности. Од-
нако возможно дальнейшее совершенствование 
архитектуры LSTM-GRU именно для повышения 
точности прогноза (см. рис. 1, 5). 

Сверточная нейронная сеть эффективна для 
обработки данных с топологией, похожей на сетку. 
CNN автоматически и адаптивно учится выделять 
иерархии признаков из входных данных. В отличие 
от обычных нейросетей, где каждый нейрон со-
единен со всеми нейронами следующего слоя,  
в CNN используется операция свертки. Благодаря 

этому сеть распознает характерные элементы  
в локальных участках, сохраняя пространственные 
связи между пикселями. 

Сверточная сеть с длительной краткосрочной 
памятью CNN-LSTM (см. рис. 1, 6) объединяет два 
разных способа обработки данных. Сверточные 
слои сначала выделяют локальные изменения в ря-
ду. Это резкие всплески, небольшие колебания, по-
вторяющиеся формы, которые встречаются в поча-
совых данных. После этого LSTM улавливает саму 
логику последовательности. Она учитывает, что 
потребление часто зависит от предыдущих часов, от 
времени суток и от накопленных изменений. В ре-
зультате модель не просто реагирует на отдельные 
пики, а понимает, как они связаны друг с другом. 

Остаточная нейронная сеть (ResNet) – это тип 
сверточной нейронной сети, которая решает про-
блему затухающих градиентов благодаря «оста-
точным блокам» с пропускаемыми соединениями. 
Структура ResNet подобна ансамблю, где входной 
сигнал обрабатывается по множеству альтернатив-
ных путей, число которых растет с глубиной сети, 
что делает ResNet эффективной для построения 
очень глубоких моделей [11]. 

Гибридная сверточная сеть (ResNet-LSTM) (см. 
рис. 1, 7) объединяет два уровня обработки дан-
ных. Остаточные сверточные блоки выделяют ло-
кальные формы внутри ряда, такие как короткие 
пики, провалы и небольшие циклы, не теряя ис-
ходный сигнал благодаря пропускам связи. LSTM 
дополняет это, улавливая более протяженные зави-
симости, связанные с суточной ритмикой и плав-
ными изменениями нагрузки. В итоге модель поз-
воляет получить детальное и последовательное 
представление о данных, что делает ее наиболее 
подходящим выбором для задач, где важны мелкие 
колебания и более длинная временная структура. 

Архитектура трансформер (transformer) – это 
нейросетевая модель, призванная эффективнее ре-
шать задачи many-to-many (seq2seq) по преобразо-
ванию одной последовательности в другую. Стан-
дартная модель трансформера (см. рис. 1, 8) состоит 
из двух блоков: кодировщика (encoder) и декоди-
ровщика (decoder) [12]. На вход кодировщику по-
ступает входная последовательность из T токенов 
(слов), каждый из которых кодируется D-мерным 
эмбеддингом, обучаемым вместе с настройкой са-
мой сети. Но информация о расположениях токенов 
внутри последовательности теряется. Чтобы модели 
в явном виде сообщить, какие токены где распола-
гались, к эмбеддингу каждого токена на входе  
в декодировщик прибавляется эмбеддинг той же 
размерности, кодирующий абсолютное расположе-
ние эмбеддинга. Это называется позиционным ко-
дированием. Выходом кодировщика является T эм-
беддингов входных элементов последовательности, 
уточненных с учетом контекста всей последова-
тельности.  
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Проведенный анализ моделей позволил выде-
лить для исследования, совершенствования, адапта-
ции и оценки точности 8 методов прогнозирования 
(см. рис. 1, 1–8). Оценку точности прогноза энерго-
потребления на основе выбранных методов будем 
осуществлять с помощью следующих метрик: 

– среднеквадратичная ошибка (Mean Squared 
Error, MSE) – это среднее значение квадратов раз-
ностей между наблюдаемыми значениями на прак-
тике и значениями, предсказанными моделью  

2

1

1
ˆMSE ,

n

ii

i

y y
n =

 = − 
 

∑   

где n – число примеров в обучающей выборке; yᵢ – 
фактическое значение; ŷᵢ – прогноз;  

– среднеквадратическое отклонение (Root Mean 
Squared Error, RMSE) показывает, насколько в сред-
нем отличаются предсказанные моделью значения 
от реальных. RMSE напрямую отражает величину 
ошибки предсказания в тех же единицах, что и ис-
следуемый показатель. RMSE полезен, когда нужно 
уменьшить ошибки и оценить точность прогнозиро-
вания модели в понятных величинах: 

2

1

1
ˆRMSE MSE ;

n

ii

i

y y
n =

 = = − 
 

∑
 

 

– средняя абсолютная ошибка прогноза (Mean 
Absolute Error, MAE) используется для измерения 
средней величины ошибок между предсказанными  
и фактическими значениями. В отличие от метрик, 
которые возводят ошибки в квадрат (например, 
MSE), MAE одинаково учитывает все ошибки, что 
делает ее интуитивно понятной и устойчивой к вы-
бросам: 

1

1
ˆMAE ;

n

ii

i

y y
n

=

= −∑
   

 

– средняя абсолютная процентная ошибка 
(Mean Absolute Percentage Error, MAPE) является 
процентным аналогом средней абсолютной ошиб-
ки (MAE) и показывает, на сколько процентов  
в среднем предсказания модели отличаются от ре-
альных значений: 

1

ˆ100
MAPE .

n

ii

i i

y y

n y=

−
= ∑

  

Например, MAE = 87,5 МВт показывает, что  
в среднем модель ошибается на 87,5 МВт. MAPE = 
= 1,92 % означает, что в среднем модель ошибается 
на 1,92 %. В работе [13] установлено, что показатель 
MAPE в пределах 2–4 % является допустимым как 
для торговли на рынке ОРЭМ, так и для прогнозиро-
вания энергопотребления в расчете устойчивости 
энергосистемы и планирования строительства новых 
энергообъектов. В качестве набора данных исполь-
зовался датасет Open Power System Data с почасовы-
ми показателями энергопотребления [14]. При раз-
работке, тестировании, анализе моделей, а также 
визуализации использовались язык программирова-
ния Python, библиотеки и фреймворки Sklearn, 
Statsmodels, Pandas, Plotly, Numpy, Itertools, Tensor- 
flow, Xgboost, Torch, Math. 

 
Адаптация и оценка точности прогнозиро-

вания методов прогнозирования энергопотреб-
ления 

Рассмотрим детально выделенные методы про-
гнозирования для анализа временных рядов на ос-
нове данных датасета по энергопотреблению. Для 
этого сведем в таблицу результаты тестирования 
моделей прогнозирования (см. рис. 1, 1–8) в соот-
ветствии с описанными ранее характеристиками 
точности прогнозирования моделей.  

Итоговые результаты работы моделей 

The final results of the models' work 

Позиция 
в списке 
моделей 

Модель 
MSE,  
МВт2 

MAE,  
МВт 

RMSE, 
МВт 

MAPE, 
% 

1 
Гибридная рекуррентная сеть LSTM-GRU 
(см. рис. 1, 5) 

1 565 464,76 967,09 1 251,19 1,86 

2 Transformer (улучш.) (см. рис. 1, 8) 2 038 927,88 1 118,52 1 427,91 2,25 

3 
Гибридная сверточная сеть (ResNet-LSTM) 
(см. рис. 1, 7) 

2 147 756,50 1 161,02 1 465,52 2,30 

4 Метод случайного леса (RF) (см. рис. 1, 2)  3 249 246,09 1 302,85 1 802,57 2,62 

5 
Метод градиентного бустинга (XGBoost) 
(см. рис. 1, 3) 

3 211 426,49 1 327,25 1 792,05 2,66 

6 Стекинг (см. рис. 1, 4) 3 480 176,03 1 349,36 1 865,52 2,71 

7 Transformer (см. рис. 1, 8) 3 492 326,75 1 427,93 1 868,78 2,80 

8 
Сверточная сеть с длительной краткосроч-
ной памятью (CNN LSTM) (см. рис. 1, 6) 

4 882 154,95 1 734,98 2 209,56 3,39 

9 SARIMA (см. рис. 1, 1) 58 538 385,61 6 022,35 7 651,04 12,12 
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SARIMA = AR (авторегрессия, учитывает инер-

цию временного ряда) + MA (скользящее среднее, 

учитывает случайные выбросы) + I (интегрирова-

ние, работа с трендом) + S (сезонность, учет паттер-

нов). Интегрированная компонента (I) делает ряд 

стационарным через дифференцирование (d (поря-

док несезонного дифференцирования) и D (порядок 

сезонного дифференцирования)), что критично для 

данных с трендами (например, рост потребления из-

за урбанизации) [15]. Авторегрессия (AR) и сколь-

зящее среднее (MA) работают с несезонными лагами 

и ошибками, а их сезонные аналоги (SAR, SMA) –  

с сезонными лагами. Это позволяет моделировать 

краткосрочные шумы и долгосрочные циклы одно-

временно [16]. Результаты тестов модели SARIMA 

на исследуемом датасете приведены в таблице и на 

рис. 2. 

 

 
 

Рис. 2. Фрагмент результатов прогноза модели SARIMA 

 

Fig. 2. A fragment of the SARIMA model forecast results 

 

Метод случайного леса. RF представляет со-

бой универсальный алгоритм машинного обуче-

ния, основанный на ансамбле решающих деревьев. 

Основная идея заключается во введении случайно-

сти при построении некоррелированных деревьев. 

Случайность достигается через бутстрап, когда 

каждое дерево обучается на случайной выборке  

с повторениями из обучающих данных, и через 

случайный выбор признаков при разбиении узлов, 

что предотвращает доминирование отдельных при-

знаков. Объединяя прогнозы деревьев, модель сни-

жает дисперсию и обеспечивает более высокую 

точность, чем отдельное дерево. Алгоритм включа-

ет создание случайных выборок из исходного набо-

ра данных, построение дерева для каждой выборки, 

получение прогнозов и агрегирование результатов 

голосованием. В отличие от одиночных деревьев, 

склонных к переобучению, RF формирует более 

устойчивую и обобщающую модель. RF успешно 

применялся для прогнозирования временных рядов, 

включая энергопотребление [17]. 

Метод градиентного бустинга. XGBoost так-

же являются ансамблевым методом, основанным 

на деревьях решений. Однако он использует дру-

гую стратегию, называемую бустинг. XGBoost 

строит систему предсказательного моделирования 

путем последовательного добавления простых мо-

делей, обычно деревьев решений, для исправления 

ошибок, допущенных предыдущими моделями. 

Каждое новое дерево обучается предсказывать оста-

точные ошибки предыдущих, эффективно учась на 

ошибках для повышения общей точности. Отличи-

тельной особенностью XGBoost являются произво-

дительность и оптимизация. Ключевые особенности 

включают: выполнение построения деревьев парал-

лельно, что значительно ускоряет процесс обучения 

модели; регуляризацию L1 и L2 для предотвраще-

ния перебора, делая модели более обобщенными; 

обработку недостающих данных (в XGBoost встро-

ена возможность обработки отсутствующих значе-

ний в наборе данных, что упрощает предваритель-

ную обработку данных); оптимизацию кэша для 

оптимального использования аппаратных ресурсов, 

что еще больше увеличивает скорость вычислений. 

Результаты тестов моделей RF и XGBoost на иссле-

дуемом датасете приведены в таблице. Фрагмент 

графика прогноза показан на рис. 3. 
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Рис. 3. Фрагмент прогноза RF и XGBoost 
 

Fig. 3. A fragment of the RF and XGBoost forecast 

 

Стекинг представляет собой метод ансамблиро-

вания, в котором несколько моделей объединяются 

через мета-модель. Базовые модели обучаются на 

исходных данных и делают прогнозы, которые пре-

вращаются в новые признаки, называемые мета-

признаками. Мета-модель обучается на этих при-

знаках и исходных значениях, чтобы найти опти-

мальную комбинацию прогнозов и сформировать 

итоговый результат. Пример: три базовые модели 

LR, DT и k-NN формируют мета-признаки, финаль-

ной моделью может быть Ridge-регрессия, которая 

обучает веса для каждой модели по формуле  

P	=	0,5	· PLR	+	1,2 · PDT	+	0,8 · Pk-NN, 

где P – итоговый прогноз; PLR – прогноз LR; PDT – 

прогноз DT; Pk-NN  – прогноз k-NN. 

«Чистые прогнозы» создаются на данных, не ис-

пользованных при обучении базовых моделей, что-

бы избежать переобучения мета-модели. В разрабо-

танной модели два уровня. Первый уровень вклю-

чает экспертов: DT, RF и XGBoost анализируют 

сложные нелинейные взаимосвязи, k-NN ищет ис-

торические аналоги, AD оценивает аномалии, LSTM 

учитывает временной контекст и долгосрочные за-

висимости. Второй уровень – это мета-модель, ко-

торая получает прогнозы всех экспертов и учится 

распределять доверие в зависимости от ситуации. 

Итоговый прогноз формируется как взвешенная 

комбинация прогнозов базовых моделей, обеспечи-

вая более высокую точность. Схема модели показа-

на на рис. 4. 

 

 
 

Рис. 4. Стекинг. Гибридная модель: z(t)(v, n) – мета-признаки 
 

Fig. 4. Stacking. Hybrid model: z(t)(v, n) – meta-features 
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LSTM в контексте стекинга работает как экс-

перт по долгосрочным и сложным временным 

трендам. Модель добавляет в ансамбль информа-

цию, которую другие модели либо не могут из-

влечь, либо извлекают хуже. Отдельно данная мо-

дель рассмотрена ранее. Результаты тестов усо-

вершенствованной модели стекинга на исследуе-

мом датасете приведены в таблице. 

В модели LSTM-GRU LSTM отвечает за улав-

ливание долгосрочных зависимостей, запоминая 

ключевую информацию на протяжении всей по-

следовательности, а GRU фокусируется на недав-

них наблюдениях и наиболее значимых признаках, 

сжимая информацию. В результате модель одно-

временно учитывает как глобальные тенденции 

(долгосрочные паттерны), так и локальные колеба-

ния, что важно для энергопотребления, где наблю-

даются как устойчивые суточные и недельные 

циклы, так и краткосрочные всплески. Результаты 

тестов модели LSTM-GRU стекинга приведены  

в таблице и на рис. 5.  

 

 
 

Рис. 5. Фрагмент прогноза LSTM-GRU  
 

Fig. 5. Fragment of the LSTM-GRU forecast 

 

Такая высокая точность обусловлена во многом 

тем, что LSTM улавливает долгосрочные зависимо-

сти: помнит важную информацию из начала 24-ча- 

сового окна; распознает суточные паттерны (ночные 

спады, утренние подъемы). В свою очередь, GRU 

эффективно сжимает информацию: извлекает наи- 

более важные признаки из всей последовательности; 

фокусируется на последних наблюдениях, которые 

важны для прогноза. Это можно объяснить, если 

вручную проанализировать часть датасета, как пока-

зано на рис. 6.  

 

 
 

Рис. 6. Пример ручного анализа части набора данных 
 

Fig. 6. An example of manual analysis of a part of a dataset 
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Как видно, в 24-часовом окне присутствуют су-

точные паттерны. 

Гибридная модель LSTM-CNN представляет со-

бой сложную структуру, состоящую из нескольких 

слоев. Модель состоит из последовательного стека 

слоев. На первом этапе используется одномерная 

сверточная сеть с 32 фильтрами и ядром размера 3, 

что позволяет автоматически извлекать локальные 

временные закономерности. Далее применяется 

слой, сокращающий временную размерность и вы-

деляющий наиболее информативные признаки. По-

лученная последовательность поступает в рекур-

рентный слой LSTM с 50 скрытыми состояниями, 

который моделирует долгосрочные зависимости 

временного ряда. Для предотвращения переобуче-

ния используется механизм случайного отключения 

части внутренних элементов (0,2). На финальном 

этапе предсказание формируется с помощью линей-

ного преобразователя, агрегирующего полученные 

признаки в одно выходное значение. Обучение про-

водится методом оптимизации Adam с функцией 

потерь MSE. На рис. 7 показан фрагмент прогноза 

LSTM-CNN. 

 

 
 

Рис. 7. Фрагмент графика прогнозирования модели LSTM-CNN 

 

Fig. 7. A fragment of the prediction graph of the LSTM-CNN model 

 

Была разработана гибридная модель ResNet-

LSTM, которая объединяет сверточные блоки  

с остаточными связями и слой LSTM. На вход по-

даются последовательности из 24 предыдущих зна-

чений, которые сначала проходят через два ResNet-

подобных блока Conv1d с активацией ReLU и про-

пусками. Conv1d – это одномерная свертка вдоль 

временной оси, которая позволяет извлекать ло-

кальные структуры во временном ряде, а пропуски 

сохраняют исходную информацию и стабилизируют 

обучение. Необходимость наличия двух ResNet бло-

ков обусловлена тем, что в исследованиях [18] было 

показано, что один блок может пропустить сложные 

зависимости, три блока и больше ведут к переобу-

чению на небольших данных. Таким образом, два 

блока – это оптимальный баланс для временных 

рядов, где первый блок выделяет простые паттерны 

(пики, провалы), а второй блок выделяет сложные 

паттерны (комбинации простых паттернов). После 

сверточной обработки данные переставляются  

в формат последовательности и подаются в LSTM, 

который учитывает долгосрочные зависимости вре-

менного ряда. Последний скрытый выход LSTM 

преобразуется полносвязным слоем в одно значе-

ние, воспринимаемое как прогноз. Для нормализа-

ции данных используется метод MinMaxScaler, ко-

торый масштабирует значения в диапазон от 0 до 1, 

что помогает ускорить обучение и стабилизировать 

градиенты. Такая комбинация сверток и рекуррент-

ного слоя позволяет модели одновременно учиты-

вать краткосрочные колебания и долгосрочные тен-

денции в потреблении электроэнергии. График про-

гнозирования частично показан на рис. 8. 
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Рис. 8. Фрагмент графика прогнозирования модели ResNet-LSTM 

 

Fig. 8. A fragment of the ResNet-LSTM model prediction graph 

 

В модели Transformer на вход декодировщику 

подается выходная последовательность, сдвинутая 

на один токен начала последовательности и завер-

шенная токеном конца последовательности с до-

полнением токеном заполнения для выравнивания 

по максимальной длине в минибатче. Последова-

тельности обрабатываются минибатчами. Макси-

мальная длина минибатча T определяется как 

T	=	max{T1,	T2,	…	TB}. 

Более короткие последовательности после то-

кена конца последовательности дополняются токе-

ном заполнения, чтобы все имели одинаковую 

длину для параллельной обработки. Кодировщик 

выдает эмбеддинг для каждого токена, к которому 

применяется линейный слой и функция активации 

SoftMax, формируя вероятностное распределение 

слов и позволяя предсказать следующее слово. 

Результаты тестирования модели Transformer при-

ведены в таблице и на рис. 9.  

 

 
 

Рис. 9. Фрагмент графика прогноза модели Transformer 

 

Fig. 9. Fragment of the forecast graph of the Transformer model 

 

Несмотря на то, что MAPE, равный 2,80 %, на 

текущий момент не является лучшим результатом 

среди всех протестированных моделей, было ре-

шено попытаться  усовершенствовать  данную  мо- 

дель трансформера [19, 20]. 

Улучшенная модель Transformer была реализо-

вана в соответствии с рекомендациями из других по-

хожих исследований [19, 20], а также на основе выво-
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дов, сделанных благодаря таким средствам интерпре-

тации работы нейросетей и аналитики, как SHAP.  

Размерность модели увеличена с 32 до 64, что 

позволяет скрытым состояниям лучше кодировать 

сложные паттерны. Количество слоев трансформера 

увеличено с 2 до 3, теперь модель может извлекать 

более сложные иерархические зависимости. Размер 

скрытого слоя FFN (Feed Forward Network) расши-

рен с 64 до 256, это повысило способность к нели-

нейным преобразованиям. Добавлены методы регу-

ляризации и оптимизации, а также Layer Norma- 

lization, которая контролирует масштаб активаций  

и снижает внутренний сдвиг распределений. Для 

стабилизации обучения используется ограничение 

величины градиентов (gradient clipping), что предот-

вращает их резкий рост. Инициализация весов вы-

полнена методом Xavier, обеспечивающим правиль-

ный масштаб начальных значений и ускоряющим 

сходимость. Функция активации ReLU заменена на 

GELU, которая обеспечивает плавную нелинейность 

и более точную передачу градиентов, приближаясь  

к поведению dropout, техники, которая случайным 

образом «отключает» часть нейронов во время обу-

чения, чтобы модель не переобучалась. Как видно из 

метрик, внесенные изменения положительно повли-

яли на точность прогноза. На рис. 10 показана часть 

графика прогнозирования обновленной модели. 

 

 
 

Рис. 10. Фрагмент графика прогноза улучшенной модели Transformer 

 

Fig. 10. A fragment of the forecast graph of the improved Transformer model 

 

Совокупное сравнение метрик всех исследо-

ванных моделей, отсортированное от лучших пока-

зателей к худшим, приведена в таблице. Модель 

LSTM-GRU показала наилучшие результаты, это 

можно объяснить тем, что она объединяет два ре-

куррентных механизма – LSTM (запоминает дол-

госрочные зависимости) и GRU (работает быстрее 

и устойчивее), тогда как датасет имеет ярко выра-

женную суточную и недельную цикличность,  

а также плавные переходы – именно то, где рекур-

рентные сети сильны, из-за чего сеть оптимально 

улавливает структуру временного ряда и не пере-

обучается. В качестве улучшения можно протести-

ровать разное число предыдущих временных ша-

гов, которые подаются на вход модели для пред-

сказания следующего значения, например 12, 24, 

48, 72 временных шага (т. е. полсуток, сутки, двое 

суток, трое суток), добавить автоматическую оста-

новку, если точность на валидационной выборке 

перестает улучшаться. 

 

Заключение 

Были рассмотрены проблемы актуальности про- 

гнозирования энергопотребления в контексте тор-

говли на оптовом рынке и проектировании энерго-

снабжения. На основе проведенного глубокого ана-

лиза моделей и методов прогнозирования энергопо-

требления была определена эффективность тех или 

иных моделей и методов, даны объяснения полу-

ченных результатов, описаны преимущества и вы-

явлены недостатки исследованных подходов, даны 

рекомендации по улучшению результатов. 

Проведенное исследование не только позволило 

определить наиболее эффективные подходы для 

краткосрочного прогнозирования энергопотребле-

ния, но и выявило направления, в которых эти мо-

дели могут развиваться дальше. Эксперименты по-

казали, что даже хорошо зарекомендовавшие себя 

архитектуры, такие как Transformer и ResNet, чув-

ствительны к подбору гиперпараметров и качеству 

предварительной обработки данных. Это означает, 

что дальнейшее повышение точности возможно  

не только за счет усложнения моделей, но и благо-

даря более тонкой настройке их структуры, кор-

ректному выбору размера входного окна, примене-

нию регуляризации и оптимизации. Кроме того, 
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комбинирование моделей различных типов, как 

продемонстрировали гибридные подходы, может 

дать дополнительный прирост точности, что делает 

дальнейшее развитие гибридных подходов перспек-

тивным направлением. В задаче прогнозирования 

энергопотребления важно корректное сочетание 

методов и адаптация моделей под структуру дан-

ных для достижения высокой точности. 
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